elektrik port üyelik servisleri elektrik port üyelik servisleri

Güç Kalitesi Ölçümü |
1. Bölüm

Güç kalitesi ölçümü, elektrik sistemlerinde yapılması gereken en önemli işlemlerden biridir. Bu işlem sayesinde şebekenin durumu ve sorunları kontrol edilir. Güç kalitesi ve ölçümü hakkındaki detaylar yazımızın devamında.



A- A+
31.03.2021 tarihli yazı 1526 kez okunmuştur.
Her elektrik şebekesinin harmonik, geçici gerilimler ve bozulmalarla ilgili sorunları bulunmaktadır. Bu sorunları giderebilmek için kapsamlı bir planlama, ölçme ve sorunun nerede olduğunu anlamamız gerekir. Güç kalitesini ölçmek ve şebekeyi zor duruma sokan sorunu bulmak güç sistemleri mühendisi tarafından yapılır ve bu işlem oldukça yüksek maliyetlidir.
 

Güç kalitesinin ölçülmesinde kullanılan aletlerin sisteme uyması ve doğru tespit yapabilmesi gerekir. Kullanıcılar, enstrümantasyonun kullanımı ve bakımı konusunda ve güç kalitesi alanında iyi eğitilmiş olmalıdır. En önemlisi de mühendis, güvenlik bilincine sahip olmalıdır. Tüm bu faktörler, güç kalitesi problemlerinin çözümünde eşit derecede önemlidir. Güç kalitesi alanında çalışmanın sabır, özen ve azim gerektirdiğini unutmamak önemlidir. Çünkü bir sorunun çözümünün kendiliğinden kazara ortaya çıkması çok nadirdir. Bu yazımızda güç kalitesinin ölçümünde kullanılan harmonik analizörünü ve geçici bozulma analizörünü inceleyeceğiz. Yazımızın 2. bölümünde ise osiloskop, veri ve grafik kaydediciler, true-rms metre ve cihaz kurulum önerileri başlıklarını inceleyeceğiz.
 

Harmonik Analizörler

Harmonik analizörler veya harmonik ölçerler, harmonik bozulma verilerini ölçmek ve kaydetmek için kullanılan araçlardır. Harmonik analizörler, dalga formu görüntüleme ekranı, gerilim uçları ve akım probları olan bir ölçüm cihazıdır.  Analiz cihazlarından bazıları elde tutulan cihazlardır ve diğerleri masa üstü kullanım için tasarlanmıştır. Bazı cihazlar, ölçümün yapıldığı an ile ilgili dalga biçiminin ve harmonik bozulmanın anlık görüntüsünü sağlar. Diğer enstrümanlar anlık görüntülerin yanı sıra zaman içinde sürekli bir harmonik bozulma kaydı yapabilir. Güç kalitesi sorununa bağlı olarak, harmonik bozulmanın anlık görüntüleri yeterli olabilir. Bununla birlikte, farklı sorunlar, harmonik bozulma özelliklerinin tesis yüklemesi ve zamanla nasıl değiştiğine dair bilgi gerektirebilir.

Peki ölçüme dahil edilmesi gereken en büyük harmonik frekans nedir? Öncelikle harmoniği tanımlayalım. Sinüzodial dalga formları dışındaki karmaşık dalga formlarına harmonik denir. Bu dalga formlarının frekansı oldukça yüksektir. Araştırmalara göre 25. harmoniklere yapılan ölçümler dalga formunun yapısını belirtmek için yeterlidir. Çeşitli üreticilerin harmonik analizörleri, farklı harmonik frekans ölçüm kapasitesine de sahip olabilir. Harmonik bozulma seviyeleri, harmonik sayı ile önemli ölçüde azalır. Frekans içeriğini doğru bir şekilde belirlemek için, ölçüm cihazının örnekleme frekansı, ilgilenilen en yüksek harmoniğin frekansının 2 katından daha büyük olmalıdır. Buna Nyquist sıklık (kararlılık) kriteri adı verilir. Nyquist kriterlerine göre, 25. harmoniğe kadar 50 Hz temel frekans dalga formunun frekans içeriğini doğru bir şekilde belirlemek için, harmonik ölçüm cihazının saniyede minimum 2500 (25 × 50 × 2) örnekleme oranına sahip olması gerekiyor.

Daha fazla örnekleme, gerçek dalga biçimini daha doğru bir şekilde yansıtır. Harmonik gerilim verilerinin ölçülmesi, bozulma ölçümlerinin gerekli olduğu noktalara bağlanabilen kablolar gerektirir. Tipik prob uçları 120 ila 180 cm uzunluğundadır. Bu uzunluklarda, yüksek frekans 1500 ila 2500 Hz (25. ila 50. harmonik) aralığında olduğundan, kablo endüktansı ve kapasitansı bir sorun oluşturmaz. Bu nedenle, probler tarafından gerilim distorsiyon verilerinde önemli bir zayıflama veya bozulma olmamaktadır. Harmonik akım verilerinin ölçülmesi ise bazı özel önlemler gerektirir. Çoğu akım probu, harmonik ölçümlerin gerekli olduğu iletkenlerin etrafına uyacak şekilde tasarlanmış bir demir çekirdekli transformatör kullanır. Demir çekirdekli akım probları, yüksek frekanslarda artan bir hataya ve nominal değerlerin üzerindeki akımlarda doygunluğa karşı hassastır. Harmonik bozulma testleri için akım problarını kurmadan önce, probun hassasiyette önemli bir kayıp olmaksızın yüksek frekanslarda kullanıma uygun olduğundan emin olmak gerekir. Bu sebepten dolayı da ölçüm aleti üreticileri kullanılabilir frekans aralığı ile ilgili veriler sağlar.


 Şekil 1: Bir Ofis Binasındaki Gerilim ve Akım Harmonik Spektrumu
 
Şekil 1'de 31. harmoniğe kadar harmonik gerilim ve akım bilgilerini görülmektedir. Tablo harmonik bozulmanın yanı sıra, harmonikler ve temel gerilim arasındaki bağıl faz açısı da verilir. Faz açısı bilgisi, harmonik akışın yönünü ve harmoniklerin kaynağının yerini değerlendirmeyi kolaylaştıran bir bilgidir.
 
Dikkat edilmesi gereken bir diğer nokta ise harmoniklerin toplam RMS değerinin yüzdesi olarak gösterilmesidir. IEEE kuralı, harmonikleri temel bileşenin bir yüzdesi olarak sunar. IEEE kuralını kullanmak daha yüksek harmonik yüzde değerlerine neden olur. Fakat hesaplama boyunca aynı ölçüm kuralı kullanılırsa, bu durumun pek bir önemi kalmaz. Aşağıdaki grafikler, görüldüğü üzere mevcut dalga biçimini ve 5 günlük paneldeki mevcut geçmişin kaydını temsil ediyor. Harmonik bozulmanın anlık görüntüleri, geçmiş grafiği ile birlikte harmoniklerin doğasını ve oluşum modellerini belirlemede oldukça kullanışlıdır.

 

 Şekil 2: Bir Aydınlatma Panelindeki Mevcut ve Geçmiş Dalga Formu Grafiği
 

Güç Kalitesi Analizörü

Güç kalitesi analizörleri, kısa süreli, alt döngü güç sistemi bozukluklarını yakalamak, depolamak ve sunmak için gelişmiş veri toplama cihazlarıdır. Bu sebepten dolayı bu araçların örnekleme oranları oldukça yüksektir. Bu cihazların saniyede 2 ila 4 milyon örnek aralığında örnekleme oranlarına sahip olması yaygın bir durumdur. Daha yüksek örnekleme oranları, geçici olayların genlik ve frekans içerikleri açısından tanımlanmasında daha fazla doğruluk sağlar. Bu özelliklerin her ikisi de geçici analiz yapmak için gereklidir. Dalga biçiminin genliği, etkilenen ekipmanın hasar görme potansiyeli hakkında bilgi sağlar. Frekans içeriği, olayların diğer devrelerle nasıl birleşebileceği ve nasıl hafifletilebileceği konusunda bilgi sağlar.


 
Şekil 3, yaklaşık 200 kHz frekans içeriği ile 562 V'lik bir tepe genliğine ulaşan bir geçici durumu göstermektedir. Bu tür bilgiler belirlendikten sonra, ekipman duyarlılığı belirlenmelidir. Örneğin, 480 V motora uygulanan 200 V tepe değerinin motor ömrü üzerinde herhangi bir etkisi olmayabilir. Bununla birlikte, bir proses kontrolörüne uygulanan aynı dürtü, anında arıza üretebilir. Güç kaynakları veya kapasitör filtre devreleri içeren ekipman, özellikle yüksek frekans içeriğine sahip hızlı yükselme zamanı geçişlerine karşı hassastır.


 
Şekil 3: 562 V Tepe Noktası ve 20 kHz Frekans ile Geçici Bozulma Anahtarlaması
 
Hızlı yükselme süresini veya daha yüksek frekanslı geçişleri ölçerken, enstrümanı test noktalarına bağlamak için kullanılan tellerin uzunluğu oldukça önemlidir. Tüm bu ölçümlerde uçlar olabildiğince kısa tutulmalıdır. Uçlar, keskin kıvrımlar veya halkalar olmadan olabildiğince düz tutulmalıdır. Her durumda, aşırı uzunluktaki bir uç asla bir bobine sarılmamalıdır.
 


Şekil 4: Oldukça Önemli Tepe Akım Bilgilerinin Kaybolmasına Neden Olan Akım Trafosu Doygunluğu
 
Yukarıdaki şekil, mevcut prob doygunluğu düz tepe akım dalga formu ve hayati bilgi kaybıyla nasıl sonuçlandığını ve güç kalitesi analizini daha zor hale getirdiğini gösterir. Güç kalitesi ölçümü hakkındaki detaylar 2. bölüm ile devam edecek.

Kaynak:

► electrical-engineering-portal.com
► allaboutcircuits.com

Serhat Seyrek Serhat Seyrek Yazar Hakkında Tüm yazıları Mesaj gönder Yazdır



Aktif etkinlik bulunmamaktadır.
ANKET
Endüstri 4.0 için En Hazır Sektör Hangisidir

Sonuçlar